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The impedance, or the reflection coefficient, of plane sound waves in
inhomogeneous ducts satisfies a Riccati equation. The present paper shows that
the duct impedance matrix, or the scattering matrix, can be related explicitly to
the solutions of the associated linear equation of the Riccati equation for duct
impedance, or reflection coefficient, respectively. New exact analytical scattering
matrix solutions, which follow as consequences of this connection, are given for
two significant duct acoustics problems, namely, the sound transmission in
non-uniform ducts carrying an incompressible subsonic low Mach number mean
flow and the transmission of sound in uniform ducts with a full quadratic axial
mean temperature gradient.

7 1998 Academic Press

1. INTRODUCTION

This paper presents, for the propagation of plane sound waves in inhomogeneous
ducts, a new relationship between the duct impedance matrix, or scattering matrix,
and the solution of a Riccati equation for duct impedance, or reflection coefficient.
It has been known for a long time that the plane wave impedance or reflection
coefficient in an inhomogeneous waveguide satisfies a Riccati equation; however,
the relationship to be described in this paper has not appeared in the literature,
hitherto. Few authors made use of the Riccati equation for the solution of plane
wave duct acoustics problems. Kergomard [1] has described a continued fraction
solution of the Riccati equation of the classical horn equation.

In this paper, duct inhomogenities due to axial gradients in the ambient
conditions as well as the cross-sectional area variations are considered and the
presence of a subsonic low Mach number mean flow is allowed for in the analysis.
The mathematical formulation is based on the general equations for
one-dimensional isentropic sound propagation and encompasses most of the
problems considered in previous papers as special cases.

The general acoustic equations can be recast in a state–space form, which
eventually leads to a transfer matrix solution for the wave transfer across a given
length of a duct, or as a Riccati equation for duct impedance, or reflection
coefficient. It is the aim of this paper to show that the solutions of the equations
governing these two formulations are connected. This connection can be
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developed either as a relationship between the duct impedance matrix and the
solution of the Riccati equation for duct impedance, or as a relationship between
the duct scattering matrix and the solution of the Riccati equation for duct
reflection coefficient. The main text of this paper is based on the reflection
coefficient formulation and the salient results of the impedance formulation are
summarized in the Appendix. The paper will also present two new exact analytical
solutions which follow as almost immediate consequences of the formulation in
terms of a Riccati equation. In the first of these, the exact scattering matrix of
non-uniform ducts carrying an incompressible subsonic low Mach number mean
flow is explicitly expressed in terms of the scattering matrix of the same duct with
no mean flow. The second gives the exact scattering matrix for sound propagation
in a uniform duct with a full quadratic ambient temperature distribution. Both
solutions are of some practical importance and are presented here for the first time.

2. FORMULATION OF DUCT ACOUSTICS PROBLEMS

2.1.   

The equations governing the propagation of plane sound waves come from the
one-dimensional gas dynamic equations. To first order in the acoustic
perturbations, the basic equations can be expressed, upon assuming e−ivt time
dependence, where i denotes the unit imaginary number, v is the radian frequency
and t is the time, as follows.

The continuity equation is

−ivr+ vor'+ vr'o + rov'+ rv'o + (rov+ rvo)(ln S)'=0. (1)

The momentum equation is

ro(−ivv+ vov'+ vv'o)+ vov'or+ p'=0. (2)

For a perfect gas, the energy equation, which is tantamount to the statement that
sound propagation is isentropic, can be expressed as [2]

−ivp+ vop'+ vp'o + gopov'+ gopv'o + go(pov+ pvo)(ln S)'=0. (3)

Here, a prime (') denotes differentiation with respect to x, the duct axis, S denotes
the duct cross-sectional area and go is the ratio of specific heat coefficients of the
ambient gas. r, p and v the acoustic density, pressure and particle velocity,
respectively, are first order perturbations, with zero averages, superimposed on the
corresponding steady mean flow values ro, po and vo, which are to be understood
as cross-sectionally averaged values that satisfy the continuity equation
(rovoS)'=0 and the state equation po = roRTo, where R denotes the gas constant
and To is the ambient temperature.

2.2.     

It is convenient to recast the foregoing equations by using the following
transformation:

p= p+ + p−, rocov= p+ − p−, c2
or= p+ e, (4a, b, c)
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where co =zgoRTo is the local speed of sound. For a uniform duct with zero
ambient gradients, it is well known that p+ and p− correspond to plane waves
travelling in +x and −x directions, respectively. This interpretation can be
extended to the present case; however, equations (4) can also be considered as a
purely mathematical transformaton. By using equations (4) in the basic acoustic
equations, it can be shown, after some algebra, that p+ and p− are given by

$p+'
p−'%=$ A[Mo]

B[−Mo]
B[Mo]

A*[−Mo]%$p+

p−%−
M2

o(ln vo)'
2(1−M2

o) $1−Mo

1+Mo% o, (5)

where Mo = vo/co denotes the local mean flow Mach number, an asterisk (*)
denotes complex conjugate and A[Mo], B[Mo] and o are given by

A[Mo]= (i2ko + (1+Mo)(ln roco)'−Mo(1+ go +Mo)(ln vo)'

− (ln po)'/go − (1+ goMo)(ln S)')/2(1+Mo), (6)

B[Mo]= (−(1+Mo)(ln roco)'−Mo(−1+ go +Mo)(ln vo)'

+ (ln po)'/go + (1− goMo)(ln S)')/2(1+Mo), (7)

o'− (iko/Mo + (ln gopo)')o=(ln go)'p, (8)

where ko =v/co denotes the local wavenumber. It should be noted that A[Mo] and
B[Mo] are functions of x, that is A[Mo]=A(x) and B[Mo]=B(x). The symbolic
notation A[Mo] and B[Mo] is used here to indicate the relationship between the
diagonal and the off-diagonal elements of the state–space matrix in equation (5).

2.3.    M  

Equations (5) and (8) have been solved numerically as a coupled system of three
first order differential equations in p+, p− and o. This part of the analysis, which
has been presented elsewhere [2], shows that for the subsonic low Mach numbers
that are of interest here, say, Mo Q 0·3, the second term on the right of equation
(5) is negligibly small. Thus, the following simplified form of equation (5) is
assumed to be valid throughout the present analysis, namely,

$p+'
p−'%=$ A[Mo]

B[−Mo]
B[Mo]

A*[−Mo]%$p+

p−%. (9)

Another approach which is used in a number of papers reporting solutions of
duct acoustics problems to decouple the three basic acoustic equations is to neglect
the term v'ovor as a small term of the second order in the momentum equation,
equation (2). This omission decouples equation (1) from equations (2) and (3), and
p and v can then be determined by solving only the latter two equations. If this
approach were adopted in the present analysis, equation (4c) would not be needed,
and in equations (6) and (7) the term Mo in the coefficients of (ln vo)' in brackets
would be absent. The present approach, which is tantamount to assuming that
v'ovoo/c2

o is small to second order, is more accurate because, for the subsonic low
Mach number ducts, the error in the isentropic relationship p= c2

or is negligibly



. 872

small and, therefore, the term v'ovoo/c2
o is some orders of magnitude smaller than

the term v'ovor. Indeed, equation (9) can be derived directly by replacing the energy
equation, equation (3), by p= c2

or.

3. FORMULATION OF DUCT ACOUSTICS PROBLEMS IN TERMS OF A
RICCATI EQUATION

3.1.  R     

The duct reflection coefficient is defined formally by the quotient,

r= p−/p+. (10)

This coincides with the traditional definition of the reflection coefficient if the
‘‘incident’’ wave is taken in the positive direction of the duct axis. Upon
introducing r, equation (9) can be recast as

(ln p+)'=A[Mo]+ rB[Mo], (ln p−)'=A*[−Mo]+B[−Mo]/r. (11a, b)

Therefore, as can be shown by differentiating equation (10) with respect to x, the
reflection coefficient is given by

r'+ (A[Mo]−A*[−Mo])r+ r2B[Mo]=B[−Mo]. (12)

This is an ordinary non-linear differential equation which is known as the general
Riccati equation. It is encountered in a number of physical problems and there
exists a vast amount of literature on its applications and solutions; however, no
one has yet found an exact analytical general solution. For the purpose of the
present study, it will suffice to consider the classical mathematical features of the
Riccati equation. A Riccati equation can also be derived for the duct impedance,
z= p/v. This alternative formulation is presented in the Appendix.

The general solution of equation (12) can be expressed as [3]

r(x)= (y'1 +Cy'2 )/B(x)(y1 +Cy2), (13)

where C denotes an integration constant, and y1 = y1(x) and y2 = y2(x) are two
independent solutions of the linear differential equation,

y0+(A[Mo]−A*[−Mo]− (ln B[Mo])')y'−B[Mo]B[−Mo]y=0. (14)

This equation is called the associated linear differential equation of the Riccati
equation, equation (12). The integration constant C is determined from the
boundary condition that at x=0 the reflection coefficient is r(0)

C=−(r(0)B(0)y1(0)− y'1 (0))/(r(0)B(0)y2(0)− y'2 (0)). (15)

Hence, equation (13) can be expressed as

r(x)B(x)=
y'2y'1 (0)− y'1y'2 (0)+ r(0)B(0)[y'1y2(0)− y'2y1(0)]
y2y'1 (0)− y1y'2 (0)+ r(0)B(0)[y1y2(0)− y2y1(0)]

. (16)

This formula can be simplified by defining a suitable set of boundary conditions
at x=0 for the solutions of the associated linear equation. The preferred set of
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boundary conditions in the present analysis is: y1(0)=0, y'1 (0)=1, y2(0)=1,
y'2 (0)=0. With these boundary conditions, equation (16) simplifies to

r(x)B(x)=
y'2 (x)+ r(0)B(0)y'1 (x)
y2(x)+ r(0)B(0)y1(x)

. (17)

3.2.    

The solution of the Riccati equation yields the duct reflection coefficient. In
most applications, however, what is required is a wave transfer relationship
between the ends of a given length of a duct so that it can be incorporated into
the complete gas flow system as an acoustic two-port. Therefore, it is desirable to
express the solution of the Riccati equation for the reflection coefficient in the form
of a duct scattering matrix. A formal general exact expression for the scattering
matrix can be derived as follows.

The relationship between the presure wave components p+(0) and p−(0) at the
origin x=0 and the pressure wave components p+(x) and p−(x) at any section
x of a duct can be expressed as

$p+(x)
p−(x)%=$T11(x)

T21(x)
T12(x)
T22(x)%$p+(0)

p−(0)%, (18)

or, in expanded form, as,

p+(x)=T11(x)p+(0)+T12(x)p−(0), (19)

p−(x)=T21(x)p+(0)+T22(x)p−(0). (20)

The 2×2 square matrix in equation (18), which is subsequently denoted by
T(x, 0), is called the scattering matrix of the duct for the interval (0, x).

The elements of the scattering matrix satisfy the following boundary conditions
at x=0:

T11(0)=1, T12(0)=0, T21(0)=0, T22(0)=1. (21)

The reflection coefficient at any section x, r(x), of the duct can be expressed in
terms of the elements of the scattering matrix as

r(x)=
T21(x)+ r(0)T22(x)
T11(x)+ r(0)T12(x)

. (22)

A similar expression for r(x) can be derived also by differentiating equation (19)
with respect to x and using equation (11a). Equating the two equations for r(x)
gives

T'11 −A[Mo]T11(x)−B[Mo]T21(x)=0,

T'12 −A[Mo]T12(x)−B[Mo]T22(x)=0. (23, 24)

This procedure can be repeated by using equation (20) and equation (11b) to
obtain

T'22 −A*[−Mo]T22(x)−B[−Mo]T12(x)=0,

T'21 −A*[−Mo]T21(x)−B[−Mo]T11(x)=0. (25, 26)
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The following theorem gives the solution of equations (23)–(26) under the
boundary conditions stated in equation (21).

Theorem. The elements of the scattering matrix defined in equation (18) are
given by,

T11(x)= h(x)y2(x), T12(x)=B(0)h(x)y1(x), (27a, b)

T21(x)= h(x)y'2 (x)/B(x), T22(x)=B(0)h(x)y'1 (x)/B(x), (27c, d)

where y1(x) and y2(x) are two independent solutions of equation (14) satisfying
the boundary conditions y1(0)=0, y'1 (0)=1, y2(0)=1, y'2 (0)=0, and h(x) is
given by

h(x)= exp0g
x

0

A(x) dx1. (28)

Proof. This theorem can easily be shown to be true by substitution of equations
(27) into equations (23)–(26). A causal proof, on the other hand, may start with
the observation that the nominator and the denominator of equation (17) can be
multiplied by any function of x, say, h(x). Then, using this modified form of
equation (17) in place of equation (22), one obtains, by using the same procedure
described above, four equations that are counterparts of equations (23)–(26),
which, upon solving for h(x), yield equations (27).

This proves that the general solution of equation (9) can be expressed in the
form of equation (18) where the elements of the duct scattering matrix are given
by equations (27). Then, for a duct of length L, the scattering matrix can be
expressed as

T(L, 0)=$ y2(L)
y'2 (L)/B(L)

B(0)y1(L)
y'1 (L)B(0)/B(L)% exp0g

L

0

A(x) dx1, (29a)

or, alternatively, in the product form

T(L, 0)= &10 0
1

B(L)'$y2(L)
y'2 (L)

y1(L)
y'1 (L)%$10 0

B(0)% exp0g
L

0

A(x) dx1. (29b)

As far as the author is aware, this result has not been published elsewhere.
Equation (29a) can be checked for the case of plane sound wave propagation

in a uniform duct carrying a uniform mean flow. This case is obtained as a limiting
case of equations (6) and (7) when all the gradient terms tend to zero.
Then, A[3Mo]:ik3

o =3iko/(13Mo), B(x):0 with B(0)/B(L):1, and
equation (14) reduces to [y'+ ikoy/(1−M2

o)]'=0, the two solutions of which that
satisfy the boundary conditions stated in the above theorem are
y1(x)= [1−exp (i(k−

o − k+
o )x]/i(k+

o − k−
o ) and y2(x)=1. Then, since y'2 =0 and

B(x):0, both off-diagonal terms in equation (29a) vanish and the scattering
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matrix reduces to the correct diagonal form with the diagonal terms given by
T11(x)= exp (ik+

o x) and T22(x)= exp (ik−
o x).

3.3.    R    

The result of the foregoing section is based on the solution of the associated
linear equation of the Riccati equation for the duct reflection coefficient. A case
where the two solutions of the associated linear equation of the Riccati equation
are found relatively easily is when the following quotients are constants:

2a=(A[Mo]−A*[−Mo])/B[Mo], b=B[−Mo]/B[Mo]. (30a, b)

This follows because the Riccatti equation for the reflection coefficient can be
recast as

dr
r2 +2ar− b

=−B(x) dx. (31)

If a and b are both constant, then this equation can be integrated by a single
quadrature:

r(x)=
(1−ef)b+ r(0)(r1 − r2 ef)
r1 ef − r2 + r(0)(1−ef)

, (32)

where

r1,2 =−a3z(a2 + b), f(x)= (r2 − r1) g
x

0

B(x) dx. (33, 34)

The two independent solutions of the associated linear differential equation of
equation (31), equation (14), which correspond to this quadrature can be derived
now by multiplying the nominator and the denominator of equation (32) by an
undetermined function of x, say, z= z(x). The resulting expression must be
consistent with equation (17). This gives the function z as

z(x)=
1

r1 − r2
exp0r1 g

x

0

B(x) dx1. (35)

Hence, the solutions of the associated linear equation corresponding to equation
(32) can be expressed as

y1(x)= (1−ef)z(x)/B(0), y2(x)= (r1 ef − r2)z(x). (36a, b)

Note that the boundary conditions y1(0)=0, y'1 (0)=1, y2(0)=1, y'2 (0)=0 are
satisfied by these solutions.

4. NEW EXACT ANALYTICAL RESULTS

In this section, exact analytical solutions are presented for two duct acoustics
problems of practical interest. These results follow from foregoing general
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considerations on the formulation of sound propagation in an inhomogeneous
duct in terms of a Riccati equation and are presented here for the first time.

4.1.     -      

  

The first problem to be considered is on the transmission of sound in
non-uniform ducts carrying a subsonic incompressible low Mach number mean
flow. For this problem, the ambient gradients may be taken as r'o =0, p'o =0.
Then, upon assuming further that g'o =0 and M2

o�1, equations (6) and (7) reduce
to

A[Mo]2
iko

1+Mo
−

(1−Mo)(ln S)'
2(1+Mo)

, B[Mo]2
(1−Mo)(ln S)'

2(1+Mo)
. (37a, b)

The linear differential equation associated with the Riccati equation for the
reflection coefficient, equation (14), corresponding to equations (37) is, for M 2

o�1,
independent of the mean flow Mach number:

y0+(i2ko − (ln S')'+ (ln S)')y'− ((ln S)'/2)2y=0, (38)

Therefore, insofar as the approximation M2
o�1 is valid, the two independent

solutions of equation (38) and their derivatives with respect to x can be expressed,
through equations (27), in terms of the elements of the scattering matrix of the
same duct with zero mean flow, say, To(x, 0), as

y1(x)=T o
12(x)/h°(x)Bo(0), y2(x)=T o

11(x)/ho(x), (39a, b)

y'1 (x)=T o
22(x)Bo(x)/ho(x)Bo(0), y'2 (x)=T o

21(x)Bo(x)/ho(x), (39c, d)

where the superscript (o) refers to the case of zero mean flow, Mo =0. Hence,
substituting equations (39) into equation (29a) and using equations (37), the
scattering matrix with mean flow can be expressed as

T(L, 0)= &10 0
1+Mo(L)
1−Mo(L)'$T o

11(L)
T o

21(L)
T o

12(L)
T o

22(L)%&10 0
1−Mo(0)
1+Mo(0)'

×exp0g
L

0

{A(x)−Ao(x)} dx1. (40)

Classically, the isentropic sound propagation in a non-uniform duct with no mean
flow is given by the horn equation which is known to admit exact analytical
solutions for a family of cross-sectional area variations. The foregoing result
extends all the known analytical solutions of the horn equation for the presence
of incompressible subsonic low Mach number mean flow.

The assumptions underlying the foregoing low Mach number incompressible
flow solution coincide with the assumptions made by Easwaran and Munjal [4]
in deriving their analytical solutions for conical and exponential ducts carrying
subsonic incompressible mean flow. Therefore, for the same duct geometries, the
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solutions indicated here should be comparable with the solutions presented in
reference [4] (see the Postscript). Similar assumptions are also made in the
three-dimensional formulation described by Doak [5].

Exact scattering matrix solutions can also be derived directly from the solution
of equation (38), if one can be found. As a straightforward application, consider
the case of an exponential diverging or converging duct. In this case
S(x)=S(0) e2mx, where m is a real constant, and equation (40) becomes
y0+i2koy'−m2y=0. The two independent solutions of this equation that satisfy
the boundary conditions of the theorem of section 3.2 can be expressed as

y1 = (er1x −er2x)/(r1 − r2), y2 = (−r2 er1x + r1 er2x)/(r1 − r2), (41, 42)

where r1,2 are given by

r1,2 = i(−ko 2zk2
o −m2). (43)

The duct scattering matrix can be obtained now by substituting equations (41) and
(42) into equation (29a) with A(x) and B(x) given by equations (37).

4.2.         

The second problem to be considered is the propagation of plane sound waves
in an inhomogeneous duct with zero mean flow, vo =0, and zero mean pressure
gradient, p'o =0. Under these conditions, equations (6) and (7) simplify to

2A(x)= i2ko + (ln roco/S)', 2B(x)=−(ln roco/S)'. (44a, b)

Then, from equations (30), a=−iv/co(ln roco/S)' and b=1. Therefore, the
Riccati equation for the reflection coefficient of this duct can be integrated by
single quadrature if co(ln roco/S)' is constant. A further assumption that can
usually be made in many practical cases is g'o =0. Then, the condition for the single
quadrature solution of the Riccati equation reduces to co(ln coS)'= constant or,
(SzTo)'AS. For a uniform duct, this condition becomes zTo =mx+C, where
m and C denote arbitrary constants. This corresponds to a full quadratic mean
temperature distribution To(x)= (mx+C)2, which is of some practical
significance because the axial temperature distribution in most applications is
usually a linear distribution like To(x)=To(0)(1+ tx), where =tx=�1, and,
therefore, can be replaced by the full quadratic distribution To(x)=To(0)
(1+ tx/2)2 without loss of accuracy.

For the case of full quadratic temperature distribution, equations (44) become

A(x)= iko −m2(mx+C), B(x)=m/2(mx+C). (45a, b)

Then, equations (33) and (34) can be expressed as

r1,2 = i(−2v/m3z4v2/m2 − goR)/zgoR, (46)

f(x)= iz4v2/m2goR−1 ln (mx+C). (47)

y1(x) and y2(x) are now determined by equations (36) and the duct scattering
matrix then follows from equation (29a). This exact analytical solution can be
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shown to be approximately valid up to mean flow Mach numbers of Mo�0·25,
say, Mo Q 0·025.

5. CONCLUSION

In this paper, new exact analytical results have been presented for plane sound
wave transmission in subsonic ducts in which arbitrary ambient gradients and
cross-sectional area variations may be present. It is interesting to note that the
general formal transfer matrix solution of the governing acoustic equations is
related not to the solution of the Riccati equation, but to the solution of its
associated linear equation, equation (14). The present study has provided some
solutions to equation (14) and it appears that other analytical solutions may also
be developed, but this may require considerably more effort. In the case of zero
mean flow, equation (14) reduces to equation (39), which may be looked upon as
a subtle form of the classical horn equation.

POSTSCRIPT

After the submission of this paper for publication, the present author became
aware of a paper by Zhenlin and Jiazheng [6], in which the authors have derived,
from the Helmholtz equation, a relationship between the elements of the
impedance matrix of a non-uniform duct with no mean flow and the impedance
matrix of the same duct carrying an incompressible low Mach number mean flow
with M2

o�1. To compare this relationship with equation (40), which is based on
quite different considerations, it is given here in terms of the elements of the
scattering matrix of the duct with mean flow, T(L, 0), and the elements of the
scattering matrix of the same duct with zero mean flow, To(L, 0):

T11(L)=T o
11(L)[1−Mo(L)+Mo(0)] exp(·), (48a)

T12(L)=T o
12(L)[1−Mo(L)−Mo(0)] exp(·), (48b)

T21(L)=T o
21(L)[1+Mo(L)+Mo(0)] exp(·), (48c)

T22(L)=T o
22(L)[1+Mo(L)−Mo(0)] exp(·). (48d)

Here, the exponential factor is given by (·)= iko(F(0)−F(L))/co, where F(x)
denotes the mean flow velocity potential function [5, 6]. The present counterparts
of these relations are given by equation (40):

T11(L)=T o
11(L) exp(×), (49a)

T12(L)=T o
12(L)[1−Mo(0)] exp(×)/[1+Mo(0)], (49b)

T21(L)=T o
21(L)[1+Mo(L)] exp(×)/[1−Mo(L)], (49c)

T22(L)=T o
22(L)[1−Mo(0)][1+Mo(L)] exp(×)/[1−Mo(L)][1+Mo(0)], (49d)

where the argument of the exponential factor, (×), is the integral in equation (40).
With equations (48) holding, there is not any variation in the transmission loss

with mean flow [6], that is, TL=TLo, where TL denotes transmission loss, which
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is defined as the level difference between the incident sound power and the
transmitted sound power for an anechoic termination. With equations (49)
holding, the transmission loss is given by the following relationship:
TL=TLo +20 Log [1+Mo(0)]/[1+Mo(L)].

Thus, equation (40), is akin, but not identical, to the corresponding relationship
presented in reference [6]. Zhenlin and Jiazheng also show that, in the case of
hyperbolic and parabolic ducts, their relationship agrees with the exact solutions
presented previously by other authors. This raises the question: Is it possible that
different exact analytical solutions of the problem can exist under the assumption
M2

o�1? So far, the present author has not succeeded in providing a rigorous
analytical answer to this question. However, equation (40) has been checked
numerically for several duct geometries by the exact solutions of the governing
acoustic equations, equation (9), which are obtained by using a numerical

Figure 1. Elements of the inverted scattering matrix of a 0·444 m long diverging conical duct with
inlet diameter 0·0246 m, truncated cone length 0·141 m and inlet mean flow Mach number of
Mo(0)=0·3 at 25°C. Compared in the figure are the solutions obtained by using the numerical
matrizant method and by using equation (40).
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Figure 2. Elements of the inverted scattering matrix of a 1-m long diverging exponential duct with
inlet cross-sectional area of 0·01 m2, outlet cross-sectional area of 0·02 m2 and inlet mean flow Mach
number of Mo(0)=0·15 at 25°C. Compared in the figure are the solutions obtained by using the
numerical matrizant method and by using equation (40).

matrizant method [7] which does not require the small Mach number assumption.
A typical case is shown in Figure 1. This is a 0·444 m long diverging conical duct
with inlet diameter 0·0246 m, truncated cone length 0·141 m and inlet mean flow
Mach number of Mo(0)=0·3 at 25°C. Compared in Figure 1 are the elements of
the inverse of the scattering matrix of this duct, which are still denoted by Tij , as
determined by using the numerical matrizant method and by using equation (40).
In the latter case, the duct scattering matrix with zero mean flow is also computed
by using the numerical matrizant method. As can be seen, equation (40) yields
almost exact results. A similar comparison is presented in Figure 2 for a 1-m long
diverging exponential duct with inlet cross-sectional area of 0·01 m2, outlet
cross-sectional area of 0·02 m2, inlet mean flow Mach number of Mo(0)=0·3 at
25°C. In this case, equation (40) gives almost exact results except for the element
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T22. The observed phase error in T22 almost dissappears when Mo(0)=0·15. Thus,
it is seen that equation (40) is a valid one and, therefore, that the answer to the
above posed question can be stated to be an affirmative one.

The numerical matrizant solution of equation (9) is described briefly in a
companion paper [7]. It may be of interest to note that, equations (41) and (42),
and equations (46) and (47) have also been checked numerically by the numerical
matrizant solutions of equation (9).
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APPENDIX: THE IMPEDANCE MATRIX FORMULATION

Equation (9) can be backtransformed, by using equations (4a) and (4b), to the
impedance variables p and v. The resulting equations can be expressed in
state-space form as

$p'
v'%=$E(x)

G(x)
F(x)
H(x)%$pv%, (A1)

where

E= vo[−iv+(go −1)v'o + govo(ln S)']/(c2
o − v2

o), (A2)

F= roc2
o[iv− v'o + vop'o/roc2

0 + vo(ln S)']/(c2
o − v2

o), (A3)

G=[iv−(go − v2
o/c2

o)v'o − govo(ln S)']/ro(c2
o − v2

o), (A4)

H=[−ivvo + vov'o − p'o/ro − c2
o(ln S)']/(c2

o − v2
o). (A5)

Upon introducing the duct impedance, z= p/v, equation (A1) can be written as

(ln p)'=E+F/z, (ln v)'=G+Hz. (A6)

Therefore, z must satisfy the Riccati equation

z'+ (G−E)z+Hz2 =F. (A7)
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The analysis of section 3 can now be repeated by using equation (A7) instead of
equation (12). As is evident from the similarity of these equations, the impedance
formulation can be obtained from the expressions given in the main text of the
paper simply by making notational changes such as p+cp, p−cv, rcz,
A[Mo]cE, B[Mo]cF, B[−Mo]cG and A*[−Mo]cH, etc. Some of the salient
relationships of the impedance formulation are summarized in the following.

The linear differential equation associated with equation (A7) is

u0+(E−H−(ln G)')u'−GFu=0. (A8)

The solution of equation (A1) can be expressed as

$p(x)
v(x)%=$Z11(x)

Z21(x)
Z12(x)
Z22(x)%$p(0)

v(0)%. (A9)

Here, the 2×2 square matrix, say, Z(x, 0), is called the duct impedance matrix.
For a duct of length L, the impedance matrix is given by

Z(L, 0)= &10 0
1

F(L)'$u2(L)
u'2 (L)

u1(L)
u'1 (L)%$10 0

F(0)% exp0g
L

0

E(x) dx1, (A10)

where u1 and u2 are two independent solutions of equation (A8) satisfying the
boundary conditions u1(0)=0, u'1 (0)=1, u2(0)=1, u'2 (0)=0.

The Riccati equation for the duct impedance, equation (A7), can be integrated
by single quadrature if the quotients a=(E−H)/2F and b=G/F are constants.
Then, the two independent solutions of equation (A8) are:

u1(x)= (1−ec)j(x)/F(0), u2(x)= (z1 ec − z2)j(x), (A11a, b)

where

z1,2 =−a3z(a2 + b), c(x)= (z2 − z1) g
x

0

F(x) dx,

j(x)=
1

z1 − z2
exp0z1 g

x

0

F(x) dx1. (A12–A14)


